Example-13

Solve 3x = 5x − 2

Solution :


xlog103 = (x −2) log105

xlog103 = xlog105 − 2log105

xlog105 − 2log105 = xlog103

xlog105 − xlog103 = 2log105

x(log105 − log103) = 2log105

∴ x = 2log 105 ÷ (log105 − log103)


Example-14

Find x if 2log5 + (1÷ 2) log 9 − log3 = logx

Solution:

logx = 2log5 + (1÷ 2) log 9 − log3

= log52 + log9(1 ÷ 2) − log3

= log 25 + log √9 − log3

= log25 + log 3 − log3

logx = log 25

∴ x = 25

Exercise-1.5

1.Determine the value of the folloing.

i.log 25 5    ii.log 813    iii.log 2 1 ÷16    iv.log 71    v.log x&radic    vi.log 10 0.01    vii.log 2 ÷3 8 ÷27    viii.2 2 + log23   

2. Write the following expressions as log N and find their values.

  1. log 2 + log 5

  2. log 216 − log 22

  3. 3 log 64 4

  4. 2 log 3 − 3 log 2

  5. log 10 + 2 log 3 − log 2



page no:25

Home