So, M is the midpoint of AB
and angle AOM = angle BOM = 1 / 2 x 120o = 60o
Let, OM = x cm
So, from Triangle OMA ,OM / OA = cos60o
or, x / 21 = 1 / 2 (Therefore , cos60o = 1 / 2)
or, x = 21 / 2
So OM = 21 / 2 cm.
Also , AM / OA = sin60o
AM / 21 = √3 / 2 (Therefore , sin60o = √3 / 2)
So , AM = 21 √3 / 2 cm.
Therefore ; AB = 2AM = 2 x 21 √3 / 2 cm. = 21 √3 cm.
So , Area of Triangle OAB = 1 / 2 x AB x OM
= 1/2 x 21 √3 x 21 / 2 cm2
= 441 / 4 √3 cm2. .....(2)
Therefore, area of the segment AYB = (462 - 441 / 4 √3) cm2
[Therefore , from (1) , (2)]
= 21 / 4 (88 - √3) cm2
= 271.047 cm2